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On the Properties  o f  a Periodic  Fluid 
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The Born-Green equation is used to clarify and estimate the error intro- 
duced into Monte Carlo and molecular dynamics simulations of dense 
fluids by the use of periodic boundary conditions. This theory is applied 
to the Lennard-Jones fluid and the theoretical predictions are found to be 
in reasonable agreement with experiment. The implications for size 
dependence of pressure, for anisotropy of the radial distribution function, 
for size dependence of the supercooling limit for crystal nucleation, and 
for the orientations of nucleated crystals are discussed. 
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1. T H E O R Y  

This paper  po in ts  ou t  a sys temat ic  e r ror  in da t a  ob ta ined  by M o n t e  Car lo  
or  molecu la r  dynamics  s imula t ions  o f  small  systems, es t imates  this error,  and  
tests its predic t ions  o f  the size dependence  o f  pressure and  the an i so t ropy  o f  
the  rad ia l  d i s t r ibu t ion  funct ion for  a per iod ic  fluid agains t  the results o f  
c o m p u t e r  s imulat ions .  

Cons ider  a s imula t ion  o f  N par t ic les  a t  dens i ty  p in a per iod ica l ly  con- 
t inued  cube o f  side L = (N/p) ~I3, and pos tu la te  a pai rwise  in terac t ion  

where  

r R~) = ~(Ri2) (0 

4,(R) = [V(R) - V(Rmax)] for R < Rm~x 
(2) 

q~(R) = 0  for R >Rm~x 
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Fig. 1. Schematic illustration of the nearest neighbor prescription for 108-particle (left) 
and 256-particle (right) systems of density Na3[ V = 91. The range of interaction (shown 
shaded) is 2.3,r. The figures are drawn to scale. 

R~2 is the "nearest  image" distance of (R1, R2), R~,ax < L/2, and V(R) is the 
potential of the bulk system whose thermodynamic properties are desired. 
(The nearest image prescription is illustrated schematically in Fig. 1.) The 
pressure is to be obtained via the virial relation 

pT - (pz/6) f daR [RV'(R)G(R)] (3) P 

where the radial distribution function G(R) to be used in (3) is given by the 
computer simulation for R < R ~ x ,  and is taken to be unity for R > R,~x. 
The "tai l  correction" is not small, but it is reasonable to assume it can be 
well estimated. (There is an additional small correction due to the fact that 
the center-of-mass velocity is zero. This point has been discussed by Hoover 
and Alder. (1~) 

Let us now compare the radial distribution function obtained by com- 
puter simulation with that of a bulk system. For either a bulk or a periodic 
system, the radial distribution is given by (for an excellent review, see 
Rushbrooke (2)) 

G(1, 2) = V2 f d3 d4 ... dN e x p ( -  U/T) (4) 

f dl d2... dN e x p ( -  U/T) 

where V is the volume and U the total potential energy. The Born-Green 
equation 

- T V~G(1, 2) = G(1, 2) VI~(1, 2) + p f d3 G(1, 2, 3) VI,~(1, 3) (5) 
d 
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which relates the radial distribution function to the triplet correlation func- 
tion, is obtained by taking the gradient of (4). This may be rearranged to read 

[T(O/~r2) + q~'(rz)lG(r2) = - p  f d3 G(1, 2, 3)(cos O)~'(r3) (6) 

where, with no loss of generality, particle 1 has been placed at the origin, 0 is 
the angle between r2 and rs, and gradients have been replaced by ordinary 
derivatives. Since Eq. (6) is derived from Eq. (4), it also applies equally well 
to a bulk or a periodic system under the assumption of pairwise interactions. 
For the periodic system the potential must be defined to include the "nearest 
image" prescription, and all particle coordinates may be restricted to the 
primary cell. The triplet function for the bulk is not known, and that for the 
periodic system may be obtained only with difficulty. However, a reasonable 
estimate (actually plus or minus a few tens of percent ~3~) may be obtained 
using the superposition approximation 

G(1, 2, 3) g G(r~2)G(r~a)G(r2a) (7) 

Consider the triplet shown in Fig. 2, for which R23 > R,~x. Denoting 
bulk correlation functions by the subscript 0, for this case 

G0(1, 2, 3) ~ Go(r12)Go(rla)(1) (8) 

if correlations in the bulk system beyond Rmax are neglected. By contrast, 
in the periodic system particles 2 and 3 are highly correlated due to the 
"nearest image" prescription, so that 

G(1, 2, 3) ~ Go(r~2)Go(r~3)Go(r~a) (9) 

(The prime notation is now used to specify the nearest image distance not 
contained in the primary cell.) Denoting by the subscript 1 the difference 

Fig. 2. Example of a triplet whose corre- 
lation function changes substantially be- 
tween bulk and periodic systems. The dashed 
lines denote the boundaries of the primary 
cell. 
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between the correlation functions in the bulk and periodic systems, we have 
that Eqs. (8) and (9) lead to 

j'G ' 23 < Rmax G~(1, 2, 3) ~ o(rl2)Go(rl~)[Go(r23) - 1] for r' (10) \o otherwise 

Inserting (10) into (6), we obtain a first-order linear equation for G(h2) whose 
solution is 

ral(r) = exp[ -~( r ) / r ]  & Go(x)I(xr/r) exp[~(x)/T] (11) 

I(r12) = f d3r3 6o(r~3)[Go(r'23) - 1]qT(rla)(r~3-r~z/lrx3[ Irx2l) (12) 

The integral in (12) is over positions of particle 3 satisfying r23 > Rm~x and 
r~3 < Rm~x. The pressure error is determined by inserting G~ into the second 
term of (3) and spherically averaging the result. 

2, R E S U L T S  

This prescription has been carried out for two systems of 108 Lennard- 
Jones particles, one under triple-point conditions [(p*, T*) = (0.8, 0.7)] and 
one under conditions of a supercooled fluid [(p*, T*) = (0.91, 0.62)]. {The 
Lennard-Jones potential is given by V = 4E[(a/R) 1 2 -  (~/R)6]. Units of 
density, temperature, and pressure are defined by p* = Na3/F, T* = kT/E, 
and P = P~s/E. Time is measured in units of ~- = (Ma3/E)II2.} In both cases 
Rmax was taken to be 2.3~, and Go(r) was taken from a molecular dynamics 
run. Some results are shown in Table I. The calculations were done to first 
order in the correction, and have not been made self-consistent. The correction 
term Gl(r) assumes positive values starting near the first neighbor peak, and 
may eventually go negative near the (100) superlattice direction. The spheric- 
ally averaged correction never exceeds about 27o. For the supercooled case 
the 108-particle system gives a pressure low by about 0.15 Lennard-Jones 
unit, or about 60 atm for argon. This is in good agreement with the result 
of Mandell et al. ~ who find an error of about 90 atm. For the triple-point 
case the error is about one-third as large. 

A more severe test is comparison of the anisotropic G(r) predicted here 
with that measured by computer experiment. To that end we measured the 
anistropy of G(r) for 108-particle molecular dynamics runs of length 90~-, and 
for a 256-particle run of 30~-. For the small systems, the results (Fig. 3) agreed 
with our prediction of the magnitude of the anisotropy and with the predicted 
sharp drop of G(r) near the (100) superlattice direction. We had not predicted 
so deep a minimum in the neighborhood of 30 ~ from (100), nor the rise beyond 
that angle. That the effect remained large for distances substantially less than 
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Table I. Calculated Corrections to Radial Distr ibution 
Function and Pressure of a 108-Particle Lennard-Jones 

Fluid for Superlatt ice Directions (cos 0, sin 0, 0) r 

Supercooled case Triple-point case 

0 Gl(Rma,:) Ap Gl(Rm~x) AP 

0.0045 -0 .44  -0 .100  -0 .098 -0 .086 
0.1714 -0 .41  -0 .139  -0 .054  -0 .093 
0.2427 - 0 . 3 4  -0 .182  -0.0085 -0 .097  
0.2976 -0 .25  -0 .219  0.030 -0 .096  
0.3441 -0 .16  -0 .246  0.059 -0 .092  
0.3852 - 0.06 - 0.263 0.075 - 0.085 
0.4224 0.01 - 0.267 0.079 - 0.076 
0.4569 0.07 - 0.260 0.074 - 0.067 
0.4890 0.11 - 0.244 0.063 - 0.058 
0.5194 0.12 -0 .233 0.053 -0 .050  
0.5482 0.12 -0 .199 0.044 -0 .043 
0.5756 0.11 -0 .176  0.037 -0 .038 
0.6020 0.09 - 0.155 0.031 - 0.033 
0.6274 0.09 - 0.136 0.027 - 0.028 
0.6520 0.07 -0 .120  0.024 -0 .024  
0.6757 0.06 -0 .106 0.021 -0 .021 
0.6988 0.05 -0 .093 0.019 -0 .018 
0.7213 0.05 -0.081 0.016 -0 .015 
0.7432 0.04 -0 .070  0.014 -0 .012 
0.7646 0.04 -0 .060  0.012 -0 .010  
0.7856 0.03 -0.051 0.010 -0 .008 

Spherical average - 0.02 - 0.15 0.02 - 0.05 

The unit of pressure is e/a 3. 

L/2 was  also unexpec t ed .  T h e s e  e r ro rs  seem to  be  d u e  in r o u g h l y  e q u a l  

m e a s u r e  to  fa i lu re  o f  t he  s u p e r p o s i t i o n  a p p r o x i m a t i o n  a n d  to  l ack  o f  self- 

cons i s t ency  in this  ca l cu l a t i on .  F o r  t he  256-par t ic le  sys tem u n d e r  s imi la r  

s u p e r c o o l e d  c o n d i t i o n s  t he  d e p a r t u r e  o f  G(r) f r o m  i s o t r o p y  was  neve r  m o r e  

t h a n  57o. 
T h e  a n i s o t r o p y  o f  t he  108-par t ic le  sys tem is a lso  seen in the  F o u r i e r  

space  r e c i p r o c a l  to  t he  super la t t i ce .  T h e  s t ruc tu re  f a c t o r  

S(k)  = ( I / N )  ~ exp[ ik(r ,  - rj)] (13) 

was  m e a s u r e d  fo r  t he  12 d i s t inc t  (511) w a v e  vec to r s  and  f o u r  (333) w a v e  

vec to r s  (in uni t s  o f  2~/L), all  o f  w h i c h  h a v e  the  s a m e  length .  F o r  the  super -  

c o o l e d  case  t he  (511) s t ruc tu re  f a c t o r  4.13 + 0.79 is s ign i f ican t ly  l a rger  t h a n  

the  (333) v a l u e  1.84 _+ 0.23. A g a i n ,  t he  effect  is mi lder ,  b u t  stil l  p resent ,  in 
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Fig. 3. Angular dependence of radial distribution function for two 108-particle systems. 

the 108-particle triple-point liquid, for which the respective structure factors 
are 2.23 _+ 0.07 and 1.93 +_ 0.06. (The errors were obtained by assuming 
structure factors in different directions to be independent, uncorrelated 
measurements.) 

3. DISCUSSION 

Because the compressibility ~p/~P of the Lennard-Jones fluid under these 
conditions is fairly small, the effects discussed here, while they seem sub- 
stantial in terms of absolute pressure, are small if the desired result is density 
as a function of pressure. If  one wishes to relate computer simulation results 
to real substances, the errors caused by size dependence are surely less than 
those caused by uncertainty in the potential. For the case of the Lennard- 
Jones fluid a great deal of thermodynamic data have been published for 
systems far larger than 108 particles (in particular, Verlet (5) and Rahman (6~ 
studied systems of 864 particles), and such work need not be considered 
suspect. However, one should be careful in studying systems that have 
relatively soft cores and long attractive tails. These are likely to show 
substantial size dependence in their thermodynamic properties. 

For studies of phenomena more complex than equilibrium thermody- 
namic data, and particularly for nucleation studies, ~4) the anisotropy of this 
effect is likely to be very important, and may be the explanation for the strong 
sample-size dependence of supercooling limit found by Mandell et al. This 
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may also explain why in several crystal nucleation events crystals never 
formed with their (100) axes in the (100) superlattice directions. The present 
study shows that this orientation would have required the second neighbors 
to be at points where G(r) is strongly depressed in the supercooled fluid. 
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